Author:
de Boer Pieter T.,Backer Jantien A.,van Hoek Albert Jan,Wallinga Jacco
Abstract
Abstract
Background
The present study aims to assess the cost-effectiveness of an influenza vaccination program for children in the Netherlands. This requires an evaluation of the long-term impact of such a program on the burden of influenza across all age groups, using a transmission model that accounts for the seasonal variability in vaccine effectiveness and the shorter duration of protection following vaccination as compared to natural infection.
Methods
We performed a cost-effectiveness analysis based on a stochastic dynamic transmission model that has been calibrated to reported GP visits with influenza-like illness in the Netherlands over 11 seasons (2003/2004 to 2014/2015). We analyzed the costs and effects of extending the current program with vaccination of children aged 2–16 years at 50% coverage over 20 consecutive seasons. We measured the effects in quality-adjusted life-years (QALYs) and we adopted a societal perspective.
Results
The childhood vaccination program is estimated to have an average incremental cost-effectiveness ratio (ICER) of €3944 per QALY gained and is cost-effective in the general population (across 1000 simulations; conventional Dutch threshold of €20,000 per QALY gained). The childhood vaccination program is not estimated to be cost-effective for the target-group itself with an average ICER of €57,054 per QALY gained. Uncertainty analyses reveal that these ICERs hide a wide range of outcomes. Even though introduction of a childhood vaccination program decreases the number of infections, it tends to lead to larger epidemics: in 23.3% of 1000 simulations, the childhood vaccination program results in an increase in seasons with a symptomatic attack rate larger than 5%, which is expected to cause serious strain on the health care system. In 6.4% of 1000 simulations, the childhood vaccination program leads to a net loss of QALYs. These findings are robust across different targeted age groups and vaccination coverages.
Conclusions
Modeling indicates that childhood influenza vaccination is cost-effective in the Netherlands. However, childhood influenza vaccination is not cost-effective when only outcomes for the children themselves are considered. In approximately a quarter of the simulations, the introduction of a childhood vaccination program increases the frequency of seasons with a symptomatic attack rate larger than 5%. The possibility of an overall health loss cannot be excluded.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. European Centre for Disease Prevention and Control. Seasonal influenza vaccination in Europe; vaccination recommendations and coverage rate in the EU member states for eight influenza seasons 2017 https://ecdc.europa.eu/sites/portal/files/documents/influenza-vaccination-2007%E2%80%932008-to-2014%E2%80%932015.pdf. Accessed 1 Nov 2018.
2. Department of Health. The flu immunisation programme 2013/14 – extension to children 2013 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/225360/Children_s_flu_letter_2013.pdf. Accessed 1 Aug 2018.
3. Heikkinen T, Tsolia M, Finn A. Vaccination of healthy children against seasonal influenza: a European perspective. Pediatr Infect Dis J. 2013;32(8):881–8.
4. Matsuoka T, Sato T, Akita T, Yanagida J, Ohge H, Kuwabara M, Tanaka J. High vaccination coverage among children during influenza A(H1N1)pdm09 as a potential factor of herd immunity. Int J Environ Res Public Health. 2016;13(10):E1017.
5. Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, Brisson M, Force I-SMGRPT. Dynamic transmission modeling: a report of the ISPOR-SMDM modeling good research practices task Force--5. Value Health. 2012;15(6):828–34.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献