Abstract
Abstract
Background
Impaired respiratory function remains underrecognized in patients with type 2 diabetes (T2D), despite common pulmonary impairment. Meanwhile, there is little data available on the respiratory effects of sodium glucose cotransporter 2 inhibitors (SGLT2i). Hence, we examined the association between SGLT2i use and the risk of adverse respiratory events in a real-world setting.
Methods
We conducted a population-based, nationwide cohort study using an active-comparator new-user design and nationwide claims data of South Korea from January 2015 to December 2020. Among individuals aged 18 years or older, propensity score matching was done to match each new user of SGLT2is with dipeptidyl peptidase 4 inhibitors (DPP4is), with patients followed up according to an as-treated definition. The primary outcome was respiratory events, a composite endpoint of acute pulmonary edema, acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure. Secondary outcomes were the individual components of the primary outcome and in-hospital death. Cox models were used to estimate hazard ratios (HRs) and 95% CIs.
Results
Of 205,534 patient pairs in the propensity score matched cohort, the mean age of the entire cohort was 53.8 years and 59% were men, with a median follow-up of 0.66 years; all baseline covariates achieved balance between the two groups. Incidence rates for overall respiratory events were 4.54 and 7.54 per 1000 person-years among SGLT2i and DPP4i users, respectively, corresponding to a rate difference of 3 less events per 1000 person-years (95% CI − 3.44 to − 2.55). HRs (95% CIs) were 0.60 (0.55 to 0.64) for the composite respiratory endpoint, 0.35 (0.23 to 0.55) for acute pulmonary edema, 0.44 (0.18 to 1.05) for ARDS, 0.61 (0.56 to 0.66) for pneumonia, 0.49 (0.31 to 0.76) for respiratory failure, and 0.46 (0.41 to 0.51) for in-hospital death. Similar trends were found across individual SGLT2is, subgroup analyses of age, sex, history of comorbidities, and a range of sensitivity analyses.
Conclusions
These findings suggest a lower risk of adverse respiratory events associated with patients with T2D initiating SGLT2is versus DPP4is. This real-world evidence helps inform patients, clinicians, and guideline writers regarding the respiratory effects of SGLT2i in routine practice.
Funder
Ministry of Food and Drug Safety
National Research Foundation South Korea
Health Fellowship Foundation
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between diabetes and respiratory diseases-clinical and therapeutic aspects. Pharmacol Res. 2018;137:230–5.
2. Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. Pulmonary complications in diabetes mellitus. Chron Respir Dis. 2008;5(2):101–8.
3. Fontaine-Delaruelle C, Viart-Ferber C, Luyton C, Couraud S. Lung function in patients with diabetes mellitus. Rev Pneumol Clin. 2016;72(1):10–6.
4. Khateeb J, Fuchs E, Khamaisi M. Diabetes and lung disease: a neglected relationship. Rev Diabet Stud. 2019;15:1–15.
5. Al-Khlaiwi T, Alsabih AO, Khan A, Habib SH, Sultan M, Habib SS. Reduced pulmonary functions and respiratory muscle strength in type 2 diabetes mellitus and its association with glycemic control. Eur Rev Med Pharmacol Sci. 2021;25(23):7363–8.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献