Author:
Tong Tong,Qin Xing,Jiang Yingying,Guo Haiyan,Wang Xiaoning,Li Yan,Xie Fei,Lu Hao,Zhai Peisong,Ma Hailong,Zhang Jianjun
Abstract
Abstract
Background
Cisplatin resistance is one of the main causes of treatment failure and death in head and neck squamous cell carcinoma (HNSCC). A more comprehensive understanding of the cisplatin resistance mechanism and the development of effective treatment strategies are urgent.
Methods
RNA sequencing, RT-PCR, and immunoblotting were used to identify differentially expressed genes associated with cisplatin resistance. Gain- and loss-of-function experiments were performed to detect the effect of CREB5 on cisplatin resistance and mitochondrial apoptosis in HNSCC. Chromatin immunoprecipitation (ChIP) assay, dual-luciferase reporter assay, and immunoblotting experiments were performed to explore the underlying mechanisms of CREB5.
Results
CREB5 was significantly upregulated in cisplatin-resistant HNSCC (CR-HNSCC) patients, which was correlated with poor prognosis. CREB5 overexpression strikingly facilitated the cisplatin resistance of HNSCC cells in vitro and in vivo, while CREB5 knockdown enhanced cisplatin sensitivity in CR-HNSCC cells. Interestingly, the activation of AKT signaling induced by cisplatin promoted nucleus translocation of CREB5 in CR-HNSCC cells. Furthermore, CREB5 transcriptionally activated TOP1MT expression depending on the canonical motif. Moreover, CREB5 silencing could trigger mitochondrial apoptosis and overcome cisplatin resistance in CR-HNSCC cells, which could be reversed by TOP1MT overexpression. Additionally, double-targeting of CREB5 and TOP1MT could combat cisplatin resistance of HNSCC in vivo.
Conclusions
Our findings reveal a novel CREB5/TOP1MT axis conferring cisplatin resistance in HNSCC, which provides a new basis to develop effective strategies for overcoming cisplatin resistance.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Gibson MK, Li Y, Murphy B, Hussain MH, DeConti RC, Ensley J, et al. Eastern Cooperative Oncology G: Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395): an intergroup trial of the Eastern Cooperative Oncology Group. J Clin Oncol. 2005;23(15):3562–7.
2. Howell SB, Safaei R, Larson CA, Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol. 2010;77(6):887–94.
3. Kelland LR, Mistry P, Abel G, Freidlos F, Loh SY, Roberts JJ, et al. Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatous germ cell line. Cancer Res. 1992;52(7):1710–6.
4. Mellish KJ, Kelland LR, Harrap KR. In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br J Cancer. 1993;68(2):240–50.
5. Brozovic A, Fritz G, Christmann M, Zisowsky J, Jaehde U, Osmak M, et al. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int J Cancer. 2004;112(6):974–85.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献