Abstract
Abstract
Background
Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes.
Methods
Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters.
Results
Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups.
Conclusions
Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.
Funder
Richard King Mellon Foundation
National Heart, Lung, and Blood Institute
National Institute of Diabetes and Digestive and Kidney Diseases
U.S. National Library of Medicine
Anonymous Foundation
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.
2. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–41.
3. Cain MA, Salemi JL, Tanner JP, Kirby RS, Salihu HM, Louis JM. Pregnancy as a window to future health: maternal placental syndromes and short-term cardiovascular outcomes. Am J Obstet Gynecol. 2016;215:484.e481-484.e414.
4. Barrett PM, McCarthy FP, Kublickiene K, Cormican S, Judge C, Evans M, Kublickas M, Perry IJ, Stenvinkel P, Khashan AS. Adverse pregnancy outcomes and long-term maternal kidney disease: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e1920964.
5. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96:1509–65.