Opening up safely: public health system requirements for ongoing COVID-19 management based on evaluation of Australia’s surveillance system performance

Author:

Lokuge Kamalini,D’Onise Katina,Banks Emily,Street Tatum,Jantos Sydney,Baptista Mohana,Glass Kathryn

Abstract

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community transmission was eliminated in Australia from 1/11/2020 to 30/6/2021, allowing evaluation of surveillance system performance in detecting novel outbreaks, including against variants of concern (VoCs). This paper aims to define system requirements for coronavirus disease 2019 (COVID-19) surveillance under future transmission and response scenarios, based on surveillance system performance to date. Methods This study described and evaluated surveillance systems and epidemiological characteristics of novel outbreaks based on publicly available data, and assessed surveillance system sensitivity and timeliness in outbreak detection. These findings were integrated with analysis of other critical COVID-19 public health measures to establish future COVID-19 management requirements. Results Twenty-five epidemiologically distinct outbreaks and five distinct clusters were identified in the study period, all linked through genomic sequencing to novel introductions from international travellers. Seventy percent (21/30) were detected through community testing of people with acute respiratory illness, and 30% (9/30) through quarantine screening. On average, 2.07% of the State population was tested in the week preceding detection for those identified through community surveillance. From 17/30 with publicly available data, the average time from seeding to detection was 4.9 days. One outbreak was preceded by unexpected positive wastewater results. Twenty of the 24 outbreaks in 2021 had publicly available sequencing data, all of which identified VoCs. A surveillance strategy for future VoCs similar to that used for detecting SARS-CoV-2 would require a 100–1000-fold increase in genomic sequencing capacity compared to the study period. Other essential requirements are maintaining outbreak response capacity and developing capacity to rapidly engineer, manufacture, and distribute variant vaccines at scale. Conclusions Australia’s surveillance systems performed well in detecting novel introduction of SARS-CoV-2 while community transmission was eliminated; introductions were infrequent and case numbers were low. Detection relied on quarantine screening and community surveillance in symptomatic members of the general population, supported by comprehensive genomic sequencing. Once vaccine coverage is maximised, future COVID-19 control should shift to detection of SARS-CoV-2 VoCs, requiring maintenance of surveillance systems and testing all international arrivals, alongside greatly increased genomic sequencing capacity. Effective government support of localised public health response mechanisms and engagement of all sectors of the community is crucial to current and future COVID-19 management.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference62 articles.

1. Bremmer I. The best global responses to the COVID-19 pandemic, 1 year later: time; [updated 23 Feb 2021]. Available from: https://time.com/5851633/best-global-responses-covid-19/.

2. Lowy Institute. Covid performance index 2021 [Available from: https://interactives.lowyinstitute.org/features/covid-performance/#overview].

3. Communicable Diseases Network Australia. Australian National Disease Surveillance Plan for COVID-19, Version 2.0, April 2021. 2021.

4. Australian Government Department of Health, Communicable Diseases Network Australia. Coronavirus disease 2019 (COVID-19) - CDNA National Guidelines for Public Health Units, Version 4.7. 2021.

5. Hong J, Chang R, Varley K. The best and worst places to be in the coronavirus era: Bloomberg; 2020 [updated 25 May 2021]. Available from: https://www.bloomberg.com/graphics/covid-resilience-ranking/.Google

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3