miR-142-3p encapsulated in T lymphocyte-derived tissue small extracellular vesicles induces Treg function defect and thyrocyte destruction in Hashimoto’s thyroiditis

Author:

Li Genpeng,He Linye,Huang Jing,Liu Jiaye,Chen Wenjie,Zhong Jinjing,Wei Tao,Li Zhihui,Zhu Jingqiang,Lei Jianyong

Abstract

Abstract Background Hashimoto’s thyroiditis (HT) is an organ-specific autoimmune disease characterized by lymphocyte infiltration that destroys thyrocyte cells. The aim of the present study was to elucidate the role and mechanisms of tissue small extracellular vesicle (sEV) microRNAs (miRNAs) in the pathogenesis of HT. Methods Differentially expressed tissue sEV miRNAs were identified between HT tissue and normal tissue by RNA sequencing in the testing set (n = 20). Subsequently, using quantitative real-time polymerase chain reaction (qRT‒PCR) assays and logistic regression analysis in the validation set (n = 60), the most relevant tissue sEV miRNAs to HT were verified. The parental and recipient cells of that tissue sEV miRNA were then explored. In vitro and in vivo experiments were further performed to elucidate the function and potential mechanisms of sEV miRNAs that contribute to the development of HT. Results We identified that miR-142-3p encapsulated in T lymphocyte-derived tissue sEVs can induce Treg function defect and thyrocyte destruction through an intact response loop. Inactivation of miR-142-3p can effectively protect non-obese diabetic (NOD).H-2h4 mice from HT development display reduced lymphocyte infiltration, lower antibody titers, and higher Treg cells. Looking at the mechanisms underlying sEV action on thyrocyte destruction, we found that the strong deleterious effect mediated by tissue sEV miR-142-3p is due to its ability to block the activation of the ERK1/2 signaling pathway by downregulating RAC1. Conclusions Our findings highlight the fact that tissue sEV-mediated miR-142-3p transfer can serve as a communication mode between T lymphocytes and thyrocyte cells in HT, favoring the progression of HT.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project and Science and Technology Achievement Transformation Project, West China Hospital, Sichuan University

Fundamental Research Funds for the Central Universities

The postdoctoral project, West China Hospital, Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3