Abstract
Abstract
Background
Age is the strongest risk factor for dementia and there is considerable interest in identifying scalable, blood-based biomarkers in predicting dementia. We examined the role of midlife serum metabolites using a machine learning approach and determined whether the selected metabolites improved prediction accuracy beyond the effect of age.
Methods
Five thousand three hundred seventy-four participants from the Whitehall II study, mean age 55.8 (standard deviation (SD) 6.0) years in 1997–1999 when 233 metabolites were quantified using nuclear magnetic resonance metabolomics. Participants were followed for a median 21.0 (IQR 20.4, 21.7) years for clinically-diagnosed dementia (N=329). Elastic net penalized Cox regression with 100 repetitions of nested cross-validation was used to select models that improved prediction accuracy for incident dementia compared to an age-only model. Risk scores reflecting the frequency with which predictors appeared in the selected models were constructed, and their predictive accuracy was examined using Royston’s R2, Akaike’s information criterion, sensitivity, specificity, C-statistic and calibration.
Results
Sixteen of the 100 models had a better c-statistic compared to an age-only model and 15 metabolites were selected at least once in all 16 models with glucose present in all models. Five risk scores, reflecting the frequency of selection of metabolites, and a 1-SD increment in all five risk scores was associated with higher dementia risk (HR between 3.13 and 3.26). Three of these, constituted of 4, 5 and 15 metabolites, had better prediction accuracy (c-statistic from 0.788 to 0.796) compared to an age-only model (c-statistic 0.780), all p<0.05.
Conclusions
Although there was robust evidence for the role of glucose in dementia, metabolites measured in midlife made only a modest contribution to dementia prediction once age was taken into account.
Funder
National Institute on Aging
UK medical research council
Wellcome Trust
Agence Nationale de la Recherche
Nordforsk
Academy of Finland
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. Geneva: World Health Organization; 2020.
2. O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 2011;34:185–204.
3. de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 2014;88(4):548–59.
4. Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, et al. Role of metabolism in neurodegenerative disorders. Metabolism. 2016;65(9):1376–90.
5. Silverberg N, Elliott C, Ryan L, Masliah E, Hodes R. NIA commentary on the NIA-AA Research Framework: Towards a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):576–8.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献