Author:
Wilding Sam,Ziauddeen Nida,Smith Dianna,Roderick Paul,Chase Debbie,Alwan Nisreen A.
Abstract
Abstract
Background
Geographical inequalities in overweight and obesity prevalence among children are well established in cross-sectional research. We aimed to examine how environmental area characteristics at birth are related to these outcomes in childhood.
Methods
Anonymised antenatal and birth data recorded by University Hospital Southampton linked to school-measured weight and height data for children within Southampton, UK, were utilised (14,084 children at ages 4–5 and 5637 at ages 10–11). Children’s home address at birth was analysed at the Lower and Middle layer Super Output Area (LSOA/MSOA) levels (areas with average populations of 1500 and 7000, respectively). Area-level indices (walkability, relative density of unhealthy food outlets, spaces for social interaction), natural greenspace coverage, supermarket density and measures of air pollution (PM2.5, PM10 and NOx) were constructed using ArcGIS Network Analyst. Overweight/obesity was defined as a body mass index (BMI; kg/m2) greater than the 85th centile for sex and age. Population-average generalised estimating equations estimated the risk of being overweight/obese for children at both time points. Confounders included maternal BMI and smoking in early pregnancy, education, ethnicity and parity. We also examined associations for a subgroup of children who moved residence between birth and outcome measurement.
Results
There were mixed results between area characteristics at birth and overweight/obesity at later ages. MSOA relative density of unhealthy food outlets and PM10 were positively associated with overweight/obesity, but not among children who moved. LSOA greenspace coverage was negatively associated with the risk of being overweight/obese at ages 10–11 in all children (relative risk ratio 0.997, 95% confidence interval 0.995–0.999, p = 0.02) and among children who moved.
Conclusions
Local access to natural greenspaces at the time of birth was inversely associated with becoming overweight or obese by age 10–11, regardless of migration. Increased access/protection of greenspace may have a role in the early prevention of childhood obesity.
Funder
Academy of Medical Sciences and Wellcome Trust
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. World Health Organization. Ending childhood obesity. Geneva; 2016. Available from: https://apps.who.int/iris/bitstream/handle/10665/204176/9789241510066_eng.pdf. Accessed 12 Feb 2020.
2. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128 million children, adolescents, and adults. Lancet. 2018;390(10113):2627–42.
3. Wilkins E, Radley D, Morris M, Hobbs M, Christensen A, Marwa WL, et al. A systematic review employing the GeoFERN framework to examine methods, reporting quality and associations between the retail food environment and obesity. Health Place. 2019;57:186–99 Available from: http://www.sciencedirect.com/science/article/pii/S1353829218310177.
4. Spence JC, Cutumisu N, Edwards J, Evans J. Influence of neighbourhood design and access to facilities on overweight among preschool children. Int J Pediatr Obes. 2008;3(2):109–16 Available from: https://www.tandfonline.com/doi/abs/10.1080/17477160701875007.
5. Sanders T, Feng X, Fahey PP, Lonsdale C, Astell-Burt T. Greener neighbourhoods, slimmer children evidence from 4423 participants aged 6 to 13 years in the longitudinal study of Australian children. Int J Obes. 2015;39(8):1224–9.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献