Author:
Jia Jinchao,Wang Mengyan,Ma Yuning,Meng Jianfen,Zhu Dehao,Chen Xia,Shi Hui,Sun Yue,Liu Honglei,Cheng Xiaobing,Su Yutong,Ye Junna,Chi Huihui,Liu Tingting,Zhou Zhuochao,Wang Fan,Chen Longfang,Yi Da,Xiao Yu,Yang Chengde,Teng Jialin,Hu Qiongyi
Abstract
Abstract
Background
Adult-onset Still’s disease (AOSD) is a systemic autoinflammatory disease characterized by innate immune system activation, with a high risk for macrophage activation syndrome (MAS). MAS development is associated with monocyte/macrophage activation and cytokine storm. Monocytes consist of three different subsets, classical monocytes (CMs, CD14brightCD16 −), intermediate monocytes (IMs, CD14brightCD16 +), and non-classical monocytes (NCMs, CD14dimCD16 +), each has distinct roles in inflammatory regulation. However, the frequencies and regulatory mechanism of monocyte subsets in AOSD patients have not been identified.
Methods
We performed flow cytometry, RNA sequencing, phagocytosis analysis, and enzyme-linked immunosorbent assay to evaluate monocyte subsets, cell functions, and potential biomarkers. The effect of neutrophil extracellular traps (NETs) on monocytes was determined by evaluating mRNA levels of DNA sensors, surface CD16 expression, and inflammasome pathway activation.
Results
Higher proportions of intermediate monocytes (IMs) were identified in active AOSD patients. IMs displayed higher expression of CD80, CD86, HLA-DR, and CD163 than CMs and NCMs. CD163 upregulation was noted on AOSD IMs, accompanied by increased phagocytic activity and elevated cytokine/chemokine production, including IL-1β, IL-6, CCL8, and CXCL10. The frequencies of IMs were correlated with disease activity and higher in AOSD patients with MAS (AOSD-MAS). CCL8 and CXCL10 were highly expressed in RNA sequencing of monocytes from AOSD-MAS patients and plasma CXCL10 level could serve as a potential biomarker for AOSD-MAS. Moreover, DNA-sensing pathway was activated in monocytes from AOSD-MAS patients. Stimulation with NETs derived from AOSD induced DNA sensor expression, the expansion of IMs, and inflammasome pathway activation. These effects can be abrogated by DNase I treatment.
Conclusions
Our results demonstrated that the proportions of IMs were elevated in AOSD and associated with MAS. The DNA component in NETs from AOSD plays an important role in the formation of IMs, shedding new light for the therapeutic target.
Funder
National Natural Science Foundation of China
Shanghai Sailing Program
Shanghai Pujiang Young Rheumatologists Training program
Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission
Shanghai Rising-Star Program
Shanghai Science and Technology Innovation Action
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献