The three numbers you need to know about healthcare: the 60-30-10 Challenge

Author:

Braithwaite JeffreyORCID,Glasziou PaulORCID,Westbrook JohannaORCID

Abstract

Abstract Background Healthcare represents a paradox. While change is everywhere, performance has flatlined: 60% of care on average is in line with evidence- or consensus-based guidelines, 30% is some form of waste or of low value, and 10% is harm. The 60-30-10 Challenge has persisted for three decades. Main body Current top-down or chain-logic strategies to address this problem, based essentially on linear models of change and relying on policies, hierarchies, and standardisation, have proven insufficient. Instead, we need to marry ideas drawn from complexity science and continuous improvement with proposals for creating a deep learning health system. This dynamic learning model has the potential to assemble relevant information including patients’ histories, and clinical, patient, laboratory, and cost data for improved decision-making in real time, or close to real time. If we get it right, the learning health system will contribute to care being more evidence-based and less wasteful and harmful. It will need a purpose-designed digital backbone and infrastructure, apply artificial intelligence to support diagnosis and treatment options, harness genomic and other new data types, and create informed discussions of options between patients, families, and clinicians. While there will be many variants of the model, learning health systems will need to spread, and be encouraged to do so, principally through diffusion of innovation models and local adaptations. Conclusion Deep learning systems can enable us to better exploit expanding health datasets including traditional and newer forms of big and smaller-scale data, e.g. genomics and cost information, and incorporate patient preferences into decision-making. As we envisage it, a deep learning system will support healthcare’s desire to continually improve, and make gains on the 60-30-10 dimensions. All modern health systems are awash with data, but it is only recently that we have been able to bring this together, operationalised, and turned into useful information by which to make more intelligent, timely decisions than in the past.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3