Automated verbal autopsy: from research to routine use in civil registration and vital statistics systems

Author:

Hazard Riley H.,Buddhika Mahesh P. K.,Hart John D.,Chowdhury Hafizur R.,Firth Sonja,Joshi Rohina,Avelino Ferchito,Segarra Agnes,Sarmiento Deborah Carmina,Azad Abdul Kalam,Ashrafi Shah Ali Akbar,Bo Khin Sandar,Kwa Violoa,Lopez Alan D.

Abstract

Abstract Background The majority of low- and middle-income countries (LMICs) do not have adequate civil registration and vital statistics (CRVS) systems to properly support health policy formulation. Verbal autopsy (VA), long used in research, can provide useful information on the cause of death (COD) in populations where physicians are not available to complete medical certificates of COD. Here, we report on the application of the SmartVA tool for the collection and analysis of data in several countries as part of routine CRVS activities. Methods Data from VA interviews conducted in 4 of 12 countries supported by the Bloomberg Philanthropies Data for Health (D4H) Initiative, and at different stages of health statistical development, were analysed and assessed for plausibility: Myanmar, Papua New Guinea (PNG), Bangladesh and the Philippines. Analyses by age- and cause-specific mortality fractions were compared to the Global Burden of Disease (GBD) study data by country. VA interviews were analysed using SmartVA-Analyze-automated software that was designed for use in CRVS systems. The method in the Philippines differed from the other sites in that the VA output was used as a decision support tool for health officers. Results Country strategies for VA implementation are described in detail. Comparisons between VA data and country GBD estimates by age and cause revealed generally similar patterns and distributions. The main discrepancy was higher infectious disease mortality and lower non-communicable disease mortality at the PNG VA sites, compared to the GBD country models, which critical appraisal suggests may highlight real differences rather than implausible VA results. Conclusion Automated VA is the only feasible method for generating COD data for many populations. The results of implementation in four countries, reported here under the D4H Initiative, confirm that these methods are acceptable for wide-scale implementation and can produce reliable COD information on community deaths for which little was previously known.

Funder

Bloomberg Family Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3