Potassium Channels as a Potential Therapeutic Target for Trigeminal Neuropathic and Inflammatory Pain

Author:

Takeda Mamoru1,Tsuboi Yoshiyuki2,Kitagawa Junichi3,Nakagawa Kazuharu4,Iwata Koichi2,Matsumoto Shigeji1

Affiliation:

1. Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo, 102-8159, Japan

2. Department of Physiology, School of Dentistry, Nihon University, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan

3. Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Niigata, 951-8514, Japan

4. Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan

Abstract

Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K+ channels (Kv) are one of the important physiological regulators of membrane potentials in excitable tissues, including nociceptive sensory neurons. Since the opening of K+ channels leads to hyperpolarization of cell membrane and a consequent decrease in cell excitability, several Kv channels have been proposed as potential target candidates for pain therapy. In this review, we focus on common changes measured in the Kv channels of several different trigeminal neuropathic/inflammatory pain animal models, particularly the relationship between changes in Kv channels and the excitability of trigeminal ganglion (TRG) neurons. We also discuss the potential of Kv channel openers as therapeutic agents for trigeminal neuropathic/inflammatory pain, such as mechanical allodynia.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3