Activation of Cyclin-Dependent Kinase 5 Mediates Orofacial Mechanical Hyperalgesia

Author:

Prochazkova Michaela1,Terse Anita1,Amin Niranjana D2,Hall Bradford1,Utreras Elias13,Pant Harish C2,Kulkami Ashok B1

Affiliation:

1. Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA

2. Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

3. Laboratory of Cellular and Neuronal Dynamics, Faculty of Science, University of Chile, Santiago, Chile

Abstract

Background Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. Results Mice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia. Conclusions Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3