Enhanced Excitability of Small Dorsal Root Ganglion Neurons in Rats with Bone Cancer Pain

Author:

Zheng Qin12,Fang Dong12,Cai Jie12,Wan You12,Han Ji-Sheng12,Xing Guo-Gang12

Affiliation:

1. Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China

2. Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China

Abstract

Background:Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain.Results:Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain.Conclusions:Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3