Expression of AMPA Receptor Subunits at Synapses in Laminae I–III of the Rodent Spinal Dorsal Horn

Author:

Polgár Erika1,Watanabe Masahiko2,Hartmann Bettina3,Grant Seth GN4,Todd Andrew J1

Affiliation:

1. Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

2. Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan

3. Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany

4. Team 32: Genes to Cognition, Wellcome Trust Sanger Institute, Cambridge, UK

Abstract

Background: Glutamate receptors of the AMPA type (AMPArs) mediate fast excitatory transmission in the dorsal horn and are thought to underlie perception of both acute and chronic pain. They are tetrameric structures made up from 4 subunits (GluR1–4), and subunit composition determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the receptors with immunocytochemistry, and in this study we have investigated the subunit composition at synapses within laminae I–III of the dorsal horn. In addition, we have compared staining of AMPArs with that for PSD-95, a major constituent of glutamatergic synapses. We also examined tissue from knock-out mice to confirm the validity of the immunostaining. Results: As we have shown previously, virtually all AMPAr-immunoreactive puncta were immunostained for GluR2. In laminae I–II, ~65% were GluR1-positive and ~60% were GluR3-positive, while in lamina III the corresponding values were 34% (GluR1) and 80% (GluR3). Puncta stained with antibody against the C-terminus of GluR4 (which only detects the long form of this subunit) made up 23% of the AMPAr-containing puncta in lamina I, ~8% of those in lamina II and 46% of those in lamina III. Some overlap between GluR1 and GluR3 was seen in each region, but in lamina I GluR1 and GluR4 were present in largely non-overlapping populations. The GluR4 puncta often appeared to outline dendrites of individual neurons in the superficial laminae. Virtually all of the AMPAr-positive puncta were immunostained for PSD-95, and 98% of PSD-95 puncta contained AMPAr-immunoreactivity. Staining for GluR1, GluR2 and GluR3 was absent in sections from mice in which these subunits had been knocked out, while the punctate staining for PSD-95 was absent in mice with a mutation that prevents accumulation of PSD-95 at synapses. Conclusion: Our results suggest that virtually all glutamatergic synapses in laminae I–III of adult rat spinal cord contain AMPArs. They show that synapses in laminae I–II contain GluR2 together with GluR1 and/or GluR3, while the long form of GluR4 is restricted to specific neuronal populations, which may include some lamina I projection cells. They also provide further evidence that immunostaining for AMPAr subunits following antigen retrieval is a reliable method for detecting these receptors at glutamatergic synapses.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3