Correlational Analysis for Identifying Genes whose Regulation Contributes to Chronic Neuropathic Pain

Author:

Persson Anna-Karin1,Gebauer Mathias2,Jordan Suzana2,Metz-Weidmann Christiane2,Schulte Anke M2,Schneider Hans-Christoph2,Ding-Pfennigdorff Danping2,Thun Jonas1,Xu Xiao-Jun3,Wiesenfeld-Hallin Zsuzsanna3,Darvasi Ariel4,Fried Kaj1,Devor Marshall5

Affiliation:

1. Center for Oral Biology, Novum, Karolinska Institutet, S-141 04 Huddinge, Sweden

2. Discovery Research, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany

3. Department of Clinical Neuroscience, Section of Clinical Neurophysiology, Karolinska Institute, S-141 86 Stockholm, Sweden

4. Department of Genetics, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

5. Department of Cell & Animal Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

Background Nerve injury-triggered hyperexcitability in primary sensory neurons is considered a major source of chronic neuropathic pain. The hyperexcitability, in turn, is thought to be related to transcriptional switching in afferent cell somata. Analysis using expression microarrays has revealed that many genes are regulated in the dorsal root ganglion (DRG) following axotomy. But which contribute to pain phenotype versus other nerve injury-evoked processes such as nerve regeneration? Using the L5 spinal nerve ligation model of neuropathy we examined differential changes in gene expression in the L5 (and L4) DRGs in five mouse strains with contrasting susceptibility to neuropathic pain. We sought genes for which the degree of regulation correlates with strain-specific pain phenotype. Results In an initial experiment six candidate genes previously identified as important in pain physiology were selected for in situ hybridization to DRG sections. Among these, regulation of the Na+ channel α subunit Scn11a correlated with levels of spontaneous pain behavior, and regulation of the cool receptor Trpm8 correlated with heat hypersensibility. In a larger scale experiment, mRNA extracted from individual mouse DRGs was processed on Affymetrix whole-genome expression microarrays. Overall, 2552 ± 477 transcripts were significantly regulated in the axotomized L5DRG 3 days postoperatively. However, in only a small fraction of these was the degree of regulation correlated with pain behavior across strains. Very few genes in the “uninjured” L4DRG showed altered expression (24 ± 28). Conclusion Correlational analysis based on in situ hybridization provided evidence that differential regulation of Scn11a and Trpm8 contributes to across-strain variability in pain phenotype. This does not, of course, constitute evidence that the others are unrelated to pain. Correlational analysis based on microarray data yielded a larger “look-up table” of genes whose regulation likely contributes to pain variability. While this list is enriched in genes of potential importance for pain physiology, and is relatively free of the bias inherent in the candidate gene approach, additional steps are required to clarify which transcripts on the list are in fact of functional importance.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3