PKCγ Receptor Mediates Visceral Nociception and Hyperalgesia following Exposure to PTSD-Like Stress in the Spinal Cord of Rats

Author:

He Yu-Qin1,Chen Qiang1,Ji Lei1,Wang Zheng-Guo1,Bai Zhi-Hong2,Stephens Robert L3,Yang Min1

Affiliation:

1. Department of Gastroenterology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Daping, Chongqing 400042, China

2. School of Psychology, Southwest University, Beibei, Chongqing 400715, China

3. Department of Physiology and Cell Biology, The Ohio State University, 43210, Columbus, Ohio, USA

Abstract

Background Clinical studies indicate that patients with post-traumatic stress disorder (PTSD) frequently share comorbidity with numerous chronic pain conditions. However, the sustained effects of PTSD-like stress over time on visceral nociception and hyperalgesia have been rarely studied, and the underlying mechanisms of stress-induced modulation of visceral hyperalgesia remain elusive. The purpose of this study was to investigate the characterization of visceral nociception and hyperalgesia over time in rats exposed to PTSD-like stress, and to explore the potential role of protein kinase C gamma (PKCγ) in mediating visceral hyperalgesia following exposure to PTSD-like stress. Results On day 1, the rats exposed to single-prolonged stress (SPS, an established animal model for PTSD) exhibited an analgesic response and its visceromotor response (VMR) to graded colorectal distention (CRD) at 40 and 60 mmHg was reduced compared with the control group (all P < 0.05). On day 6, the VMR returned to the baseline value. However, as early as 7 days after SPS, VMR dramatically increased compared with its baseline value and that in the controls (all P < 0.001) and this increase persisted for 28 days, with the peak on day 9. Abdomina withdrawal reflex (AWR) scores were higher in SPS rats than in controls on days 7, 9, 14, 21 and 28 (all P < 0.001). ntrathecal administration of GF109203X (an inhibitor of PKC gamma), attenuated the SPS-induced increase in both VMR and AWR scores on days 7, 14, 21 and 28 (all P < 0.05). PKCγ protein expression determined by immunofluorescence was reduced in the spinal cord within 3 days after the exposure to SPS ( P < 0.01), which returned to normal levels between days 4 and 6, and significantly increased from day 7, and this increase was maintained on days 14, 21, and 28 (all P < 0.001), with the peak on day 9. In addition, Western blotting showed a consistent trend in the changes of PKCγ protein expression. Conclusions The modified SPS alters visceral sensitivity to CRD, and contributes to the maintenance of visceral hyperalgesia, which is associated with enhanced PKCγ expression in the spinal cord. Functional blockade of the PKCγ receptors attenuates SPS-induced visceral hyperalgesia. Thus, the present study identifies a specific molecular mechanism for visceral hyperalgesia which may pave the way for novel therapeutic strategies for PTSD-like conditions.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3