Affiliation:
1. Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
Abstract
Background: Oxaliplatin is an important drug used in the treatment of colorectal cancer. However, it frequently causes severe acute and chronic peripheral neuropathies. We recently reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats, and that oxalate derived from oxaliplatin is involved in the cold hyperalgesia. In the present study, we examined the effects of Ca2+ channel blockers on oxaliplatin-induced cold hyperalgesia in rats. Methods: Cold hyperalgesia was assessed by the acetone test. Oxaliplatin (4 mg/kg), sodium oxalate (1.3 mg/kg) or vehicle was injected i.p. on days 1 and 2. Ca2+ (diltiazem, nifedipine and ethosuximide) and Na+ (mexiletine) channel blockers were administered p.o. simultaneously with oxaliplatin or oxalate on days 1 and 2. Results: Oxaliplatin (4 mg/kg) induced cold hyperalgesia and increased in the transient receptor potential melastatin 8 (TRPM8) mRNA levels in the dorsal root ganglia (DRG). Furthermore, oxalate (1.3 mg/kg) significantly induced the increase in TRPM8 protein in the DRG. Treatment with oxaliplatin and oxalate (500 μM for each) also increased the TRPM8 mRNA levels and induced Ca2+ influx and nuclear factor of activated T-cell (NFAT) nuclear translocation in cultured DRG cells. These changes induced by oxalate were inhibited by nifedipine, diltiazem and mexiletine. Interestingly, co-administration with nifedipine, diltiazem or mexiletine prevented the oxaliplatin-induced cold hyperalgesia and increase in the TRPM8 mRNA levels in the DRG. Conclusions: These data suggest that the L type Ca2+ channels/NFAT/TRPM8 pathway is a downstream mediator for oxaliplatin-induced cold hyperalgesia, and that Ca2+ channel blockers have prophylactic potential for acute neuropathy.
Subject
Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献