An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli

Author:

Ghosh Chaitali,Gupta Rashmi,Mukherjee Krishna Jyoti

Abstract

Abstract Background A useful goal for metabolic engineering would be to generate non-growing but metabolically active quiescent cells which would divert the metabolic fluxes towards product formation rather than growth. However, for products like recombinant proteins, which are intricately coupled to the growth process it is difficult to identify the genes that need to be knocked-out/knocked-in to get this desired phenotype. To circumvent this we adopted an inverse metabolic engineering strategy which would screen for the desired phenotype and thus help in the identification of genetic targets which need to be modified to get overproducers of recombinant protein. Such quiescent cells would obviate the need for high cell density cultures and increase the operational life span of bioprocesses. Results A novel strategy for generating a library, consisting of randomly down regulated metabolic pathways in E. coli was designed by cloning small genomic DNA fragments in expression vectors. Some of these DNA fragments got inserted in the reverse orientation thereby generating anti-sense RNA upon induction. These anti-sense fragments would hybridize to the sense mRNA of specific genes leading to gene ‘silencing’. This library was first screened for slow growth phenotype and subsequently for enhanced over-expression ability. Using Green Fluorescent Protein (GFP) as a reporter protein on second plasmid, we were able to identify metabolic blocks which led to significant increase in expression levels. Thus down-regulating the ribB gene (3, 4 dihydroxy-2-butanone-4-phosphate synthase) led to a 7 fold increase in specific product yields while down regulating the gene kdpD (histidine kinase) led to 3.2 fold increase in specific yields. Conclusion We have designed a high throughput screening approach which is a useful tool in the repertoire of reverse metabolic engineering strategies for the generation of improved hosts for recombinant protein expression.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3