Author:
Jiang Tianyi,Gao Chao,Dou Peipei,Ma Cuiqing,Kong Jian,Xu Ping
Abstract
Abstract
Background
NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids.
Results
Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid.
Conclusions
A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献