Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production

Author:

Marisch Karoline,Bayer Karl,Cserjan-Puschmann Monika,Luchner Markus,Striedner Gerald

Abstract

Abstract Background In the biopharmaceutical industry, Escherichia coli (E. coli) strains are among the most frequently used bacterial hosts for producing recombinant proteins because they allow a simple process set-up and they are Food and Drug Administration (FDA)-approved for human applications. Widespread use of E. coli in biotechnology has led to the development of many different strains, and selecting an ideal host to produce a specific protein of interest is an important step in developing a production process. E. coli B and K–12 strains are frequently employed in large-scale production processes, and therefore are of particular interest. We previously evaluated the individual cultivation characteristics of E. coli BL21 and the K–12 hosts RV308 and HMS174. To our knowledge, there has not yet been a detailed comparison of the individual performances of these production strains in terms of recombinant protein production and system stability. The present study directly compared the T7-based expression hosts E. coli BL21(DE3), RV308(DE3), and HMS174(DE3), focusing on evaluating the specific attributes of these strains in relation to high-level protein production of the model protein recombinant human superoxide dismutase (SOD). The experimental setup was an exponential carbon-limited fed-batch cultivation with minimal media and single-pulse induction. Results The host strain BL21(DE3) produced the highest amounts of specific protein, followed by HMS174(DE3) and RV308(DE3). The expression system HMS174(DE3) exhibited system stability by retaining the expression vector over the entire process time; however, it entirely stopped growing shortly after induction. In contrast, BL21(DE3) and RV308(DE3) encountered plasmid loss but maintained growth. RV308(DE3) exhibited the lowest ppGpp concentration, which is correlated with the metabolic stress level and lowest degradation of soluble protein fraction compared to both other strains. Conclusions Overall, this study provides novel data regarding the individual strain properties and production capabilities, which will enable targeted strain selection for producing a specific protein of interest. This information can be used to accelerate future process design and implementation.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3