Author:
Umenhoffer Kinga,Fehér Tamás,Balikó Gabriella,Ayaydin Ferhan,Pósfai János,Blattner Frederick R,Pósfai György
Abstract
Abstract
Background
Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential.
Results
We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones.
Conclusions
Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献