Author:
Johnsen Mads G,Hansen Ole C,Stougaard Peter
Abstract
Abstract
Background
Chitosanases (EC 3.2.1.132) hydrolyze the polysaccharide chitosan, which is composed of partially acetylated β-(1,4)-linked glucosamine residues. In nature, chitosanases are produced by a number of Gram-positive and Gram-negative bacteria, as well as by fungi, probably with the primary role of degrading chitosan from fungal and yeast cell walls for carbon metabolism. Chitosanases may also be utilized in eukaryotic cell manipulation for intracellular delivery of molecules formulated with chitosan as well as for transformation of filamentous fungi by temporal modification of the cell wall structures.
However, the chitosanases used so far in transformation and transfection experiments show optimal activity at high temperature, which is incompatible with most transfection and transformation protocols. Thus, there is a need for chitosanases, which display activity at lower temperatures.
Results
This paper describes the isolation of a chitosanase-producing, cold-active bacterium affiliated to the genus Janthinobacterium. The 876 bp chitosanase gene from the Janthinobacterium strain was isolated and characterized. The chitosanase was related to the Glycosyl Hydrolase family 46 chitosanases with Streptomyces chitosanase as the closest related (64% amino acid sequence identity). The chitosanase was expressed recombinantly as a periplasmic enzyme in Escherichia coli in amounts about 500 fold greater than in the native Janthinobacterium strain. Determination of temperature and pH optimum showed that the native and the recombinant chitosanase have maximal activity at pH 5-7 and at 45°C, but with 30-70% of the maximum activity at 10°C and 30°C, respectively.
Conclusions
A novel chitosanase enzyme and its corresponding gene was isolated from Janthinobacterium and produced recombinantly in E. coli as a periplasmic enzyme. The Janthinobacterium chitosanase displayed reasonable activity at 10°C to 30°C, temperatures that are preferred in transfection and transformation experiments.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference40 articles.
1. Fenton DM, Eveleigh DE: Purification and mode of action of a chitosanase from Penicillium islandicum. J Gen Microbiol. 1981, 126: 151-165.
2. Pochanavanich P, Suntornsuk W: Fungal chitosan production and its characterization. Lett Appl Microbiol. 2002, 35: 17-21. 10.1046/j.1472-765X.2002.01118.x.
3. Davis B, Eveleigh DE: Chitosanases: occurrence, production and immobilization. Chitin, Chitosan and Related Enzymes. Edited by: Zikakis JP. 1984, New York: Academic Press, 161-179.
4. Khor E: The relevance of chitin. Chitin: Fulfilling a biomaterials promise. Edited by: Khor E. 2001, Oxford, United Kingdom: Elsevier Science Ltd, 1-8. First
5. Hirano S, Nagao N: Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agric Biol Chem. 1989, 53: 3065-3066.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献