Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis

Author:

Isticato Rachele,Sirec Teja,Treppiccione Lucia,Maurano Francesco,De Felice Maurilio,Rossi Mauro,Ricca Ezio

Abstract

Abstract Background Mucosal infections are a major global health problem and it is generally accepted that mucosal vaccination strategies, able to block infection at their entry site, would be preferable with respect to other prevention approaches. However, there are still relatively few mucosal vaccines available, mainly because of the lack of efficient delivery systems and of mucosal adjuvants. Recombinant bacterial spores displaying a heterologous antigen have been shown to induce protective immune responses and, therefore, proposed as a mucosal delivery system. A non-recombinant approach has been recently developed and tested to display antigens and enzymes. Results We report that the binding subunit of the heat-labile toxin (LTB) of Escherichia coli efficiently adsorbed on the surface of Bacillus subtilis spores. When nasally administered to groups of mice, spore-adsorbed LTB was able to induce a specific immune response with the production of serum IgG, fecal sIgA and of IFN-γ in spleen and mesenteric lymph nodes (MLN) of the immunized animals. Dot blotting experiments showed that the non-recombinant approach was more efficient than the recombinant system in displaying LTB and that the efficiency of display could be further increased by using mutant spores with an altered surface. In addition, immunofluorescence microscopy experiments showed that only when displayed on the spore surface by the non-recombinant approach LTB was found in its native, pentameric form. Conclusion Our results indicate that non-recombinant spores displaying LTB pentamers can be administered by the nasal route to induce a Th1-biased, specific immune response. Mutant spores with an altered coat are more efficient than wild type spores in adsorbing the antigen, allowing the use of a reduced number of spores in immunization procedures. Efficiency of display, ability to display the native form of the antigen and to induce a specific immune response propose this non-recombinant delivery system as a powerful mucosal vaccine delivery approach.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3