A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences

Author:

Kuijpers Niels GA,Solis-Escalante Daniel,Bosman Lizanne,van den Broek Marcel,Pronk Jack T,Daran Jean-Marc,Daran-Lapujade Pascale

Abstract

Abstract Background In vivo recombination of overlapping DNA fragments for assembly of large DNA constructs in the yeast Saccharomyces cerevisiae holds great potential for pathway engineering on a small laboratory scale as well as for automated high-throughput strain construction. However, the current in vivo assembly methods are not consistent with respect to yields of correctly assembled constructs and standardization of parts required for routine laboratory implementation has not been explored. Here, we present and evaluate an optimized and robust method for in vivo assembly of plasmids from overlapping DNA fragments in S. cerevisiae. Results To minimize occurrence of misassembled plasmids and increase the versatility of the assembly platform, two main improvements were introduced; i) the essential elements of the vector backbone (yeast episome and selection marker) were disconnected and ii) standardized 60 bp synthetic recombination sequences non-homologous with the yeast genome were introduced at each flank of the assembly fragments. These modifications led to a 100 fold decrease in false positive transformants originating from the backbone as compared to previous methods. Implementation of the 60 bp synthetic recombination sequences enabled high flexibility in the design of complex expression constructs and allowed for fast and easy construction of all assembly fragments by PCR. The functionality of the method was demonstrated by the assembly of a 21 kb plasmid out of nine overlapping fragments carrying six glycolytic genes with a correct assembly yield of 95%. The assembled plasmid was shown to be a high fidelity replica of the in silico design and all glycolytic genes carried by the plasmid were proven to be functional. Conclusion The presented method delivers a substantial improvement for assembly of multi-fragment expression vectors in S. cerevisiae. Not only does it improve the efficiency of in vivo assembly, but it also offers a versatile platform for easy and rapid design and assembly of synthetic constructs. The presented method is therefore ideally suited for the construction of complex pathways and for high throughput strain construction programs for metabolic engineering purposes. In addition its robustness and ease of use facilitate the construction of any plasmid carrying two or more genes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3