Author:
Su Marcia S,Schlicht Sabine,Gänzle Michael G
Abstract
Abstract
Background
Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri.
Results
A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations.
Conclusions
The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference46 articles.
1. Brandt MJ: Sourdough products for convenient use in baking. Food Microbiol. 2007, 24: 161-164. 10.1016/j.fm.2006.07.010.
2. Brandt MJ: Geschichte des Sauerteiges. Handbuch Sauerteig. Edited by: Gänzle MG, Brandt MJ. 2006, Hamburg: Behr’s Verlag, 1-5. 6
3. Böcker G, Stolz P, Hammes WP: Neue Erkenntnisse zum :Ökosystem Sauerteig und zur Physiologie der sauerteigtypischen Stämme Lactobacillus sanfrancisco und Lactobacillus pontis. Getreide Mehl Brot. 1995, 49: 370-374.
4. Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA: Non-dairy lactic fermentations: The cereal world. Antonie van Leeuwenhoek. 1999, 76: 403-411. 10.1023/A:1002089515177.
5. De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S: Biodiversity, ecological determinants, and metabolic exploitations of sourdough microbiota. Food Microbiol. 2009, 26: 666-675. 10.1016/j.fm.2009.07.012.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献