Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli

Author:

Balderas-Hernández Víctor E,Sabido-Ramos Andrea,Silva Patricia,Cabrera-Valladares Natividad,Hernández-Chávez Georgina,Báez-Viveros José L,Martínez Alfredo,Bolívar Francisco,Gosset Guillermo

Abstract

Abstract Background Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED) and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies. Results Sequencing of the trpED genes from E. coli W3110 trpD9923 revealed a nonsense mutation in the trpD gene, causing the loss of anthranilate phosphoribosyl transferase activity, but maintaining anthranilate synthase activity, thus causing anthranilate accumulation. The effects of expressing genes encoding a feedback inhibition resistant version of the enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (aroG fbr), transketolase (tktA), glucokinase (glk) and galactose permease (galP), as well as phosphoenolpyruvate:sugar phosphotransferase system (PTS) inactivation on anthranilate production capacity, were evaluated. In shake flask experiments with minimal medium, strains W3110 trpD9923 PTS- and W3110 trpD9923/pJLBaroG fbr tkt A displayed the best production parameters, accumulating 0.70–0.75 g/L of anthranilate, with glucose-yields corresponding to 28–46% of the theoretical maximum. To study the effects of extending the growth phase on anthranilate production a fed-batch fermentation process was developed using complex medium, where strain W3110 trpD9923/ pJLBaroG fbr tkt A produced 14 g/L of anthranilate in 34 hours. Conclusion This work constitutes the first example of a microbial system for the environmentally-compatible synthesis of anthranilate generated by metabolic engineering. The results presented here, including the characterization of mutation in the trpD gene from strain W3110 trpD9923 and the development of a fermentation strategy, establish a step forward towards the future improvement of a sustainable process for anthranilate production. In addition, the present work provides very useful data regarding the positive and negative consequences of the evaluated metabolic engineering strategies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3