Impact of oleic acid as co-substrate of glucose on “short” and “long-term” Crabtree effect in Saccharomyces cerevisiae

Author:

Marc Jillian,Feria-Gervasio David,Mouret Jean-Roch,Guillouet Stéphane E

Abstract

Abstract Background Optimization of industrial biomass directed processes requires the highest biomass yield as possible. Yet, some useful yeasts like Saccharomyces cerevisiae are subject to the Crabtree effect under glucose excess. This phenomenon can occur in large scale tank where heterogeneities in glucose concentrations exist. Therefore yeasts encounter local environments with glucose excess leading to ethanol production to the detriment of biomass formation. We previously demonstrated that oleic acid as a co-substrate in glucose-limited chemostat allowed to delay and modulate the “short-term” Crabtree effect in Saccharomyces cerevisiae. Here we further investigated the effect of oleic acid as a modulator of the Crabtree effect. Results The impact of oleic acid as co-substrate on the Crabtree effect was investigated in terms of i) strain specificity, ii) reversibility of the potential effect with aerobic glucose-excess batches and iii) durability and maximal capacities under high ethanol stress with glucose-excess fed-batches. First, the addition of oleic acid resulted in an increase of the critical dilution rate by 8% and the specific carbon uptake rate by 18%. Furthermore, a delay was observed for the onset of ethanol production when a batch was inoculated with cells previously grown in glucose-oleate chemostat. Finally, the culture of adapted cells in a glucose-oleate fed-batch led to a redirection of the carbon flux toward biomass production, with a 73% increase in the biomass yield. Conclusions This work demonstrated clearly that the perturbation by oleic acid as co-substrate resulted in a decrease in the “short-term” and “long-term” Crabtree effects. This impact was not strain dependent and reversible. Thus, industrial applications of this biochemical strategy could be envisaged to tackle heterogeneities issues in large scale tanks or to prepare starter yeasts for various applications.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3