Extracellular secretion of a recombinant therapeutic peptide by Bacillus halodurans utilizing a modified flagellin type III secretion system

Author:

Berger Eldie,Crampton Michael C,Nxumalo Nolwandle P,Louw Maureen E

Abstract

Abstract Background Through modification of the flagellin type III secretion pathway of Bacillus halodurans heterologous peptides could be secreted into the medium as flagellin fusion monomers. The stability of the secreted monomers was significantly enhanced through gene-targeted inactivation of host cell extracellular proteases. In evaluating the biotechnological potential of this extracellular secretion system an anti-viral therapeutic peptide, Enfuvirtide, was chosen. Currently, Enfuvirtide is synthesised utilizing 106 chemical steps. We used Enfuvirtide as a model system in an effort to develop a more cost-effective biological process for therapeutic peptide production. Results An attempt was made to increase the levels of the fusion peptide by two strategies, namely strain improvement through gene-targeted knock-outs, as well as vector and cassette optimization. Both approaches proved to be successful. Through chromosomal inactivation of the spo0A, lytC and lytE genes, giving rise to strain B. halodurans BhFDL05S, the secretion of recombinant peptide fusions was increased 10-fold. Cassette optimization, incorporating an expression vector pNW33N and the N- and C-terminal regions of the flagellin monomer as an in-frame peptide fusion, resulted in a further 3.5-fold increase in the secretion of recombinant peptide fusions. Conclusions The type III flagellar secretion system of B. halodurans has been shown to successfully secrete a therapeutic peptide as a heterologous flagellin fusion. Improvements to both the strain and expression cassette led to increased levels of recombinant peptide, showing promise for a biotechnological application.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3