Author:
Jürgen Britta,Breitenstein Antje,Urlacher Vlada,Büttner Knut,Lin Hongying,Hecker Michael,Schweder Thomas,Neubauer Peter
Abstract
Abstract
Background
Bacterial inclusion bodies (IBs) are key intermediates for protein production. Their quality affects the refolding yield and further purification. Recent functional and structural studies have revealed that IBs are not dead-end aggregates but undergo dynamic changes, including aggregation, refunctionalization of the protein and proteolysis. Both, aggregation of the folding intermediates and turnover of IBs are influenced by the cellular situation and a number of well-studied chaperones and proteases are included. IBs mostly contain only minor impurities and are relatively homogenous.
Results
IBs of α-glucosidase of Saccharomyces cerevisiae after overproduction in Escherichia coli contain a large amount of (at least 12 different) major product fragments, as revealed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE). Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight Mass-Spectrometry (MALDI-ToF MS) identification showed that these fragments contain either the N- or the C-terminus of the protein, therefore indicate that these IBs are at least partially created by proteolytic action. Expression of α-glucosidase in single knockout mutants for the major proteases ClpP, Lon, OmpT and FtsH which are known to be involved in the heat shock like response to production of recombinant proteins or to the degradation of IB proteins, clpP, lon, ompT, and ftsH did not influence the fragment pattern or the composition of the IBs. The quality of the IBs was also not influenced by the sampling time, cultivation medium (complex and mineral salt medium), production strategy (shake flask, fed-batch fermentation process), production strength (T5-lac or T7 promoter), strain background (K-12 or BL21), or addition of different protease inhibitors during IB preparation.
Conclusions
α-glucosidase is fragmented before aggregation, but neither by proteolytic action on the IBs by the common major proteases, nor during downstream IB preparation. Different fragments co-aggregate in the process of IB formation together with the full-length product. Other intracellular proteases than ClpP or Lon must be responsible for fragmentation. Reaggregation of protease-stable α-glucosidase fragments during in situ disintegration of the existing IBs does not seem to occur.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference59 articles.
1. Mayer M, Buchner J: Refolding of inclusion body proteins. Methods Mol Med. 2004, 94: 239-254.
2. Rudolph R: Successful protein folding on an industrial scale. Principles and Practice of Protein Folding. Edited by: Cleland JL, Craik CS. 1996, New York: J. Wiley & Sons Inc.
3. de Groot NS, Ventura S: Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol. 2006, 125: 110-113. 10.1016/j.jbiotec.2006.02.026.
4. Allen SP, Polazzi JO, Gierse JK, Easton AM: Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol. 1992, 174: 6938-6947.
5. Goff SA, Goldberg AL: Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell. 1985, 41: 587-595. 10.1016/S0092-8674(85)80031-3.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献