Author:
Borodina Irina,Jensen Bettina M,Søndergaard Ib,Poulsen Lars K
Abstract
Abstract
Background
Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model.
Results
The proteins were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating allergen-specific histamine release from human basophils.
Conclusions
All the three major wasp venom allergens were expressed on the yeast surface. A high-level expression, which was observed only for antigen 5, was needed for detection of IgE binding by FACS and for induction of histamine release. The non-modified S. cerevisiae cells did not cause any unspecific reaction in FACS or histamine release assay despite the expression of high-mannose oligosaccharides.
In perspective the yeast surface display may be used for allergen discovery from cDNA libraries and possibly for sublingual immunotherapy as the cells can serve as good adjuvant and can be produced in large amounts at a low price.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference38 articles.
1. Egger M, Hauser M, Himly M, Wopfner N, Wallner M, Ferreira F: Development of recombinant allergens for diagnosis and therapy. Front Biosci (Elite Ed). 2009, 1: 77-90.
2. Vrtala S: From allergen genes to new forms of allergy diagnosis and treatment. Allergy. 2008, 63 (3): 299-309. 10.1111/j.1398-9995.2007.01609.x.
3. Crameri R, Walter G: Selective enrichment and high-throughput screening of phage surface-displayed cDNA libraries from complex allergenic systems. Comb Chem High Throughput Screen. 1999, 2 (2): 63-72.
4. Edwards MR, Collins AM, Ward RL: The application of phage display in allergy research: characterization of IgE, identification of allergens and development of novel therapeutics. Curr Pharm Biotechnol. 2001, 2 (3): 225-240. 10.2174/1389201013378653.
5. Bowley DR, Labrijn AF, Zwick MB, Burton DR: Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel. 2007, 20 (2): 81-90. 10.1093/protein/gzl057.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献