A power law study of the edge influence on the perceived filling-in brightness magnitude

Author:

Costa Marcelo FernandesORCID,Gaddi Carlo Martins

Abstract

Abstract Background Edge plays a special role in spatial perception and as well as in determining the brightness of a surface within borders. The aim of our study was to measure threshold brightness in different levels of edges thickness. Methods Steven’s power law for circles modulating in luminance was estimated for 30 subjects (mean age 24 years, SD 3.3, 13 female). Stimuli were presented on the iMac display using the 11-bit graphic board and consisted of two circles of 3° of visual angle, separated by 10°. We tested 7 levels of Michelson contrast: 7, 8, 10, 15, 26, 50, and 100. Three edges filtering were tested (0.3, 0.8, and 1.5° of smoothing). The subjects’ task was to judge the brightness of the edge filtered circle compared with the circle of the hard edge which was considered the modulus and received an arbitrary level of 50, representing the amount of brightness perception. In each trial, the same contrast level was presented in both circles. Five judgments were performed for each contrast level in edge filtering. Results We found an increase in the power law exponent as the increase of the edge filtering (for sigma of 0.3 = 0.43, sigma of 0.8 = 0.73, and sigma 1.5 = 0.97). All power function fitting had high correlation coefficients (r2 = .94, r2 = .95, r2 = .97, respectively to sigma 0.3, 0.8, and 1.5) passing to the model’s adhesion criteria. Conclusions There was a progressive distortion on the figure brightness perception as increasing the edge filtering suggesting the control of edges on the polarity of the overall brightness. Also, perceived brightness was increasingly veridical with increased filtering, approaching 1:1 correspondence at 1.5 sigmas.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3