TET2 and DNMT3A mutations and exceptional response to 4′-thio-2′-deoxycytidine in human solid tumor models

Author:

Yang Sherry X.,Hollingshead Melinda,Rubinstein Larry,Nguyen Dat,Larenjeira Angelo B. A.,Kinders Robert J.,Difilippantonio Michael,Doroshow James H.

Abstract

Abstract Background Challenges remain on the selection of patients who potentially respond to a class of drugs that target epigenetics for cancer treatment. This study aims to investigate TET2/DNMT3A mutations and antitumor activity of a novel epigenetic agent in multiple human cancer cell lines and animal models. Methods Seventeen cancer cell lines and multiple xenograft models bearing representative human solid tumors were subjected to 4′-thio-2′-deoxycytidine (T-dCyd) or control treatment. Gene mutations in cell lines were examined by whole exome and/or Sanger sequencing. Specific gene expression was measured in cells and xenograft tumor samples by Western blotting and immunohistochemistry. TET2/DNMT3A mutation status in 47,571 human tumor samples was analyzed at cBioPortal for Cancer Genomics. Results Cell survival was significantly inhibited by T-dCyd in breast BT549, lung NCI-H23, melanoma SKMEL5 and renal ACHN cancer lines harboring deleterious TET2 and nonsynonymous DNMT3A mutations compared to 13 lines without such mutation pattern (P = 0.007). The treatment upregulated p21 and induced cell cycle arrest in NCI-H23 cells, and dramatically inhibited their xenograft tumor growth versus wildtype models. T-dCyd administrations led to a significant p21 increase and near eradication of tumor cells in the double-mutant xenografts by histological evaluation. TET2/DNMT3A was co-mutated in human lung, breast, skin and kidney cancers and frequently in angioimmunoblastic and peripheral T cell lymphomas and several types of leukemia. Conclusions Cell and animal models with concurrent mutations in TET2 and DNMT3A were sensitive to T-dCyd treatment. The mutations were detectable in human solid tumors and frequently occur in some hematological malignancies.

Funder

Division of Cancer Diagnosis and Treatment, National Cancer Institute

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3