Generation of sarconoids from angiosarcoma patients as a systematic-based rational approach to treatment

Author:

Jung Da Jung,Byeon Jae Hee,Kim Young Chul,Jeong Woo Shik,Choi Jong-Woo,Jeong Gi Seok

Abstract

AbstractAngiosarcoma is a rare subtype of malignant neoplasm originating from vascular or lymphatic endothelial cells; its low incidence has posed significant challenges for comprehensive investigations into its pathogenic mechanisms and the development of innovative treatment modalities through in vitro and in vivo models. Recent endeavors spearheaded by patient-partnered research initiatives have aimed to elucidate the intricacies of angiosarcomas by leveraging biological omics approaches, with the overarching objective of enhancing prognostic indicators and therapeutic options for this uncommon pathology. To bridge the gap between preclinical research and translational applications, we engineered angiosarcoma-derived organoids from surgically resected primary tumors, hereafter referred to as “sarconoids,” as a proof-of-concept model. A novel protocol for the establishment of these sarconoids has been developed and validated. To ensure that the sarconoids faithfully recapitulate the heterogeneity and complexities of the patients’ original tumors, including transcriptomic signatures, cell-type specificity, and morphological traits, exhaustive histological and transcriptomic analyses were conducted. Subsequently, we expanded the scope of our study to include an evaluation of a sarconoid-based drug screening platform; for this purpose, a drug library (AOD IX), supplied by the National Cancer Institute’s Developmental Therapeutics Program, was screened using 96-well plates. Our findings suggest that sarconoids can be reliably generated from angiosarcoma patient-derived tissues and can serve as accurate models for evaluating therapeutic responses, thereby holding far-reaching implications for translational research and clinical applications aimed at advancing our understanding and treatment of angiosarcoma.

Funder

National Research Foundation of Korea

Ministry of Health and Welfare

Asan Institute for Life Sciences, Asan Medical Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3