NBAS, a gene involved in cytotoxic degranulation, is recurrently mutated in pediatric hemophagocytic lymphohistiocytosis

Author:

Bi Xiaoman,Zhang Qing,Chen Lei,Liu Dan,Li Yueying,Zhao Xiaoxi,Zhang Ya,Zhang Liping,Liu Jingkun,Wu Chaoyi,Li Zhigang,Zhao Yunze,Ma Honghao,Huang Gang,Liu Xin,Wang Qian-fei,Zhang Rui

Abstract

AbstractHemophagocytic lymphohistiocytosis (HLH), particularly primary HLH (pHLH), is a rare, life-threatening disease. Germline genetic deficiency of 12 known HLH genes impairs cytotoxic degranulation in natural killer (NK) cells or cytotoxic T lymphocytes (CTLs) and contributes to pHLH development. However, no pathogenic mutations in these HLH genes are found in nearly 10% of HLH patients, despite a strong suspicion of pHLH, suggesting that the underlying genetic basis of HLH is still unclear. To discover novel susceptibility genes, we first selected 13 children with ppHLH (presumed primary HLH patients in the absence of detectable known HLH gene variants) and their parents for initial screening. Whole-genome sequencing (WGS) in one trio and whole-exome sequencing (WES) in twelve trios revealed that two ppHLH patients carried biallelic NBAS variants, a gene that is involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport upstream of the degranulation pathway. Additionally, two candidate genes, RAB9B and KLC3, showed a direct relationship with known HLH genes in protein-protein interaction (PPI) network analysis. We analyzed NBAS, RAB9B, KLC3 and known HLH genes in an independent validation cohort of 224 pediatric HLH patients. Only biallelic NBAS variants were identified in three patients who harbored no pathogenic variants in any of the known HLH genes. Functionally, impaired NK-cell cytotoxicity and degranulation were revealed in both NBAS biallelic variant patients and in an NBAS-deficient NK-cell line. Knockdown of NBAS in an NK-cell line (IMC-1) using short hairpin RNA (shRNA) resulted in loss of lytic granule polarization and a decreased number of cytotoxic vesicles near the Golgi apparatus. According to our findings, NBAS is the second most frequently mutated gene (2.11%) in our HLH cohort after PRF1. NBAS deficiency may contribute to the development of HLH via a dysregulated lytic vesicle transport pathway.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Natural Science Foundation

The Special Fund of The Pediatric Medical Coordinated Development Center of Beijing Municipal Administration of hospitals

Beijing Municipal Science & Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3