Hyperhomocysteinemia potentiates megakaryocyte differentiation and thrombopoiesis via GH-PI3K-Akt axis

Author:

Lei Wenjing,Liu Zhuoliang,Su Zhiyuan,Meng Panpan,Zhou Chun,Chen Xiaomei,Hu Zheng,Xiao An,Zhou Miaomiao,Huang Liping,Zhang Yiyue,Qin Xianhui,Wang Junping,Zhu Fengxin,Nie Jing

Abstract

AbstractHyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in participants with PLT ≥ 291 × 109/L (full adjusted β, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories of megakaryopoiesis from human umbilical cord blood (hUCB) CD34+ cells. Together with in vitro and in vivo analysis, we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Administration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mechanisms by which HHcy confers an increased thrombotic risk.Trial Registration clinicaltrials.gov Identifier: NCT00794885.

Funder

Nature and Science Foundation of China

National Key R&D program of China

Nature and Science Foundation of Guangdong province

Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3