Author:
Lei Kecheng,Gu Xiaoxia,Alvarado Alvaro G.,Du Yuhong,Luo Shilin,Ahn Eun Hee,Kang Seong Su,Ji Bing,Liu Xia,Mao Hui,Fu Haian,Kornblum Harley I.,Jin Lingjing,Li Hua,Ye Keqiang
Abstract
Abstract
Background
Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation.
Methods
High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo.
Results
We identified a small molecular inhibitor, “MNPC,” that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo.
Conclusions
Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Funder
Foundation for the National Institutes of Health
The University of California Presidents Postdoctoral Fellowship
UCLA SPORE in Brain Cancer
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Biology,Hematology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献