Direct inhibition of dioxygenases TET1 by the rheumatoid arthritis drug auranofin selectively induces cancer cell death in T-ALL

Author:

Chen Long,Ren Anqi,Zhao Yuan,Chen Hangyu,Wu Qifang,Zheng Mengzhu,Zhang Zijian,Zhang Tongcun,Zhong Wu,Lin Jian,Zhu Haichuan

Abstract

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is a type of hematologic tumor with malignant proliferation of hematopoietic progenitor cells. However, traditional clinical treatment of T-ALL included chemotherapy and stem cell transplantation always lead to recurrence and poor prognosis, thus new therapeutic targets and drugs are urgently needed for T-ALL treatment. In this study, we showed that TET1 (ten-eleven translocation 1), a key participant of DNA epigenetic control, which catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to modulate gene expression, was highly upregulated in human T-ALL and negatively correlated with the prognosis of patients. Knockdown of TET1 suppressed T-ALL growth and progression, suggesting that TET1 inhibition maybe an effective way to fight T-ALL via DNA epigenetic modulation. Combining structure-guided virtual screening and cell-based high-throughput screening of FDA-approved drug library, we discovered that auranofin, a gold-containing compound, is a potent TET1 inhibitor. Auranofin inhibited the catalytic activity of TET1 through competitive binding to its substrates binding pocket and thus downregulated the genomic level of 5hmC marks and particularly epigenetically reprogramed the expression of oncogene c-Myc in T-ALL in TET1-dependent manner and resulted in suppression of T-ALL in vitro and in vivo. These results revealed that TET1 is a potential therapeutic target in human T-ALL and elucidated the mechanism that TET1 inhibitor auranofin suppressed T-ALL through the TET1/5hmC/c-Myc signaling pathway. Our work thus not only provided mechanism insights for T-ALL treatment, but also discovered potential small molecule therapeutics for T-ALL.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3