A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing

Author:

Tang Xiaozhu,Deng Zhendong,Ding Pinggang,Qiang Wanting,Lu Yue,Gao Shengyao,Hu Ye,Yang Ye,Du Juan,Gu Chunyan

Abstract

Abstract Backgroud Multiple myeloma (MM) is an incurable plasma cell malignancy in the bone marrow (BM), while immunoglobulin D type of MM (IgD MM) is a very rare but most severe subtype in all MM cases. Therefore, systemic study on IgD MM is purposeful to disclose the recurrent and refractory features in both IgD and other types of MM, and beneficial to the development of potent therapeutic strategy on MM. Methods Agilent SBC-ceRNA microarray chips were employed to examine 3 normal plasma cell samples (NPCs), 5 lgD MM samples and 5 lgG MM samples, respectively. Sanger sequencing, RNase R digestion and qPCR assays were used to detect the existence and expression of circHNRNPU. BaseScope™ RNA ISH assay was performed to test circHNRNPU levels in paraffin-embedded MM tissues. The protein encoded by circHNRNPU was identified by LC-MS/MS, which was named as circHNRNPU_603aa. The function of circHNRNPU_603aa on cellular proliferation and cell cycle was assessed by MTT test, colony formation assay, flow cytometry and MM xenograft mouse model in vivo. RIP-seq, RIP-PCR and WB analysis for ubiquitination were performed to explore the potential mechanism of circHNRNPU_603aa in MM. Exosomes were isolated from the culture supernatant of MM cells by ultracentrifugation and characterized by Transmission Electron Microscope and WB confirmation of exosomes markers Alix and CD9. Results CircHNRNPU was one of the top most abundant and differentially expressed circRNA in IgD MM relative to lgG and NPCs samples. Increased circHNRNPU was associated with poor outcomes in four independent MM patient cohorts. Intriguingly, MM cells secreted circHNRNPU, which encoded a protein named as circHNRNPU_603aa. Overexpressed circHNRNPU_603aa promoted MM cell proliferation in vitro and in vivo, in contrast knockdown of circHNRNPU_603aa by siRNA abrogated these effects. Due to circHNRNPU_603aa including RNA-binding RGG-box region, it regulated SKP2 exon skipping, thereby competitively inhibited c-Myc ubiquitin so as to stabilize c-Myc in MM. MM cells secreted circHNRNPU through exosomes to interfere with various cells in the BM microenvironment. Conclusion Our findings demonstrate that circHNRNPU_603aa is a promising diagnostic and therapeutic marker in both MM cells and BM niche.

Funder

National Key R&D Program of China

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3