HIF1α-SP1 interaction disrupts the circ-0001875/miR-31-5p/SP1 regulatory loop under a hypoxic microenvironment and promotes non-small cell lung cancer progression

Author:

Wu DongORCID,Chen Tingting,Zhao Xuanna,Huang Dan,Huang Jiawei,Huang Yujie,Huang Qiu,Liang Zhu,Chen Chunyuan,Chen Min,Li Dongming,Wu Bin,Li Lixia

Abstract

Abstract Background Circular RNAs (circRNAs) play an important role in the progression of non-small cell lung cancer (NSCLC), especially under tumor hypoxia. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC are largely unknown. Methods High-throughput RNA sequencing was performed to identify significantly expressed circRNAs in NSCLC tissues. The functions of circ-0001875 in NSCLC cells were investigated in vitro and in vivo. The regulatory relationships of circ-0001875, miR-31-5p and SP1 were examined by dual luciferase reporter assays and rescue experiments. The signal pathway of epithelial-to-mesenchymal transition and the formation of filopodia were analyzed by western blot and immunofluorescence staining. The binding of SP1 to Alu elements was evaluated by RNA immunoprecipitation, and the HIF1α and SP1 interaction was detected by co-immunoprecipitation. Results We identified the novel Has_circ_0001875 as a significantly upregulated circRNA in NSCLC tissues and cell lines. circ-0001875 promoted the proliferation and metastasis of NSCLC both in vitro and in vivo, and induced NSCLC cells to extend filopodia. Mechanistically, circ-0001875 sponged miR-31-5p to regulate SP1, influencing epithelial-to-mesenchymal transition via the TGFβ/Smad2 signal pathway. SP1 negatively regulated circ-0001875 formation through an AluSq-dependent feedback loop, which was disrupted by competitive binding of HIF1α to SP1 under hypoxia condition. The circ-0001875/miR-31-5p/SP1 axis was associated with the clinical features and prognosis of NSCLC patients. Conclusions Our results revealed that the circ-0001875/miR-31-5p/SP1 axis and the complex regulatory loops influence NSCLC progression. These findings provide new insights into the regulation of circRNA formation under tumor hypoxia.

Funder

Affiliated Hospital of Guangdong Medical University “Clinical Medicine+” CnTech Co-operation Project

Discipline Construction Project of Guangdong Medical University

The Project of Zhanjiang City

The Doctoral Start-up Project of Affiliated Hospital of Guangdong Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3