Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning “Two Keys” simultaneously

Author:

Luo Wen,Hoang Hai,Miller Katherine E.,Zhu Hongwen,Xu Serena,Mo Xiaokui,Garfinkle Elizabeth A. R.,Costello Heather,Wijeratne Saranga,Chemnitz Wiebke,Gandhi Ronan,Liao Yanling,Ayello Janet,Gardenswartz Aliza,Rosenblum Jeremy M.,Cassady Kevin A.,Mardis Elaine R.,Lee Dean A.,Cripe Timothy P.,Cairo Mitchell S.

Abstract

Abstract Background Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. Methods Macrophages were derived from human peripheral blood monocytes by granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. Results We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. Conclusions By turning “two keys” simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3