A novel dual epigenetic approach targeting BET proteins and HDACs in Group 3 (MYC-driven) Medulloblastoma

Author:

Kling Matthew J.,Kesherwani Varun,Mishra Nitish K.,Alexander Gracey,McIntyre Erin M.,Ray Sutapa,Challagundla Kishore B.,Joshi Shantaram S.,Coulter Don W.,Chaturvedi Nagendra K.ORCID

Abstract

Abstract Background Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs. This study aimed to investigate the therapeutic potential of inhibiting the BET proteins and HDACs together in MB. Methods Using clinically relevant BET inhibitors (JQ1 or OTX015) and a pan-HDAC inhibitor (panobinostat), we evaluated the effects of combined inhibition on cell growth/survival in MYC-amplified MB cell lines and xenografts and examined underlying molecular mechanism(s). Results Co-treatment of JQ1 or OTX015 with panobinostat synergistically suppressed growth/survival of MYC-amplified MB cells by inducing G2 cell cycle arrest and apoptosis. Mechanistic investigation using RNA-seq revealed that co-treatment of JQ1 with panobinostat synergistically modulated global gene expression including MYC/HDAC targets. SYK and MSI1 oncogenes were among the top 50 genes synergistically downregulated by JQ1 and panobinostat. RT-PCR and western blot analyses confirmed that JQ1 and panobinostat synergistically inhibited the mRNA and protein expression of MSI1/SYK along with MYC expression. Reduced SYK/MSI expression after BET (specifically, BRD4) gene-knockdown further confirmed the epigenetic regulation of SYK and MSI1 genes. In addition, the combination of OTX015 and panobinostat significantly inhibited tumor growth in MYC-amplified MB xenografted mice by downregulating expression of MYC, compared to single-agent therapy. Conclusions Together, our findings demonstrated that dual-inhibition of BET and HDAC proteins of the epigenetic pathway can be a novel therapeutic approach against MYC-driven MB.

Funder

CHRI-PCRG Funds, The State of Nebraska

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3