HnRNP A1 - mediated alternative splicing of CCDC50 contributes to cancer progression of clear cell renal cell carcinoma via ZNF395

Author:

Sun Guoliang,Zhou Hui,Chen Ke,Zeng Jin,Zhang Yangjun,Yan Libin,Yao Weimin,Hu Junhui,Wang Tao,Xing Jinchun,Xiao Kefeng,Wu Lily,Ye Zhangqun,Xu Hua

Abstract

Abstract Background Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive. Methods Bioinformatic algorithm was utilized to identify significant exon skipping events in ccRCC via exon sequencing data from The Cancer Genome Atlas. Semi-quantitative real-time polymerase chain reaction and western blot were used to validate the aberrant expression of different transcripts in renal cancer tissues, cell lines and corresponding noncancerous controls. Short hairpin RNA targeting CCDC50 and overexpressing plasmids for each transcript were introduced into ccRCC cell lines, followed by a series of in vitro and in vivo functional experiments. Moreover, a panel of splicing factors were identified and their roles on splicing regulation of CCDC50 precursor mRNA (pre-mRNA) were studied. Furthermore, RNAseq data were analyzed to elucidate downstream molecules of CCDC50. Two-way analysis of variance and unpaired Student t test were used in statistical analysis. Results Pre-mRNA of CCDC50 generated two transcripts, full-length transcript (CCDC50-FL) and truncated transcript (CCDC50-S) with exon 6 skipped. CCDC50-S was overexpressed in ccRCC tissues and cell lines compared to noncancerous counterparts, but CCDC50-FL was only detected in noncancerous tissues and normal renal epithelial cells. Higher percent spliced-in index was associated with better survival in ccRCC patients. In vitro and in vivo functional experiments indicated that CCDC50-S transcript promoted the proliferation, migration, invasion and tumorigenesis of ccRCC, while CCDC50-FL exerted opposite tumor suppressive functions. Besides, we identified that heterogeneous nuclear ribonucleoprotein A1 (HnRNP A1) could promote the skipping of exon 6, which resulted in higher portion of CCDC50-S and oncogenic transformation. Moreover, zinc finger protein 395 (ZNF395) was identified as a downstream protein of CCDC50-S, and the interaction initiated oncogenic pathways which were involved in ccRCC progression. Conclusions Aberrant alternative splicing of CCDC50 is regulated by HnRNP A1 in ccRCC. This splicing event contributes to cancer progression through the downstream pathway involving ZNF395.

Funder

National Natural Science Foundation of China

National Major Scientific and Technological Special Project for “Significant New Drugs Development”

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3