Author:
Fang Kang,Sun Mingchuang,Leng Zhuyun,Chu Yuan,Zhao Ziying,Li Zhaoxing,Zhang Yunwei,Xu Aiping,Zhang Zehua,Zhang Li,Chen Tao,Xu Meidong
Abstract
Abstract
Background
Cisplatin (DDP)-based chemotherapy is commonly adopted as the first-line treatment for patients with oesophageal squamous cell carcinoma (OSCC), but the high rate of drug resistance limits its clinical application and the underlying mechanisms at play remain unclear. The aims of this study were to elucidate the role of abnormal signal transmission and metabolism in the chemoresistance of OSCC under hypoxia and to identify targeted drugs that enhance the sensitivity of DDP chemotherapy.
Methods
Upregulated genes in OSCC were determined by RNA sequencing (RNA-seq), the Cancer Genome Atlas (TCGA) database, immunohistochemistry (IHC), real-time quantitative PCR (RT-qPCR), and western blotting (WB). The clinicopathological significance of insulin-like growth factor-I receptor (IGF1R), argininosuccinate synthetase 1 (ASS1), and pyrroline-5-carboxylate reductase 1 (PYCR1) in OSCC was analysed using tissue micriarray (TMA). Metabolic abnormalities were determined by untargeted metabolomics analysis. The DDP-resistance role of IGF1R, ASS1, and PYCR1 in OSCC was investigated in vitro and in vivo.
Results
Generally, tumour cells exist in a hypoxic microenvironment. By genomic profiling, we determined that IGF1R, as a receptor tyrosine kinase (RTK), was upregulated in OSCC under low-oxygen conditions. Clinically, enhanced IGF1R expression was associated with higher tumour stages and a poorer prognosis in OSCC patients, and its inhibitor, linsitinib, showed synergistic effects with DDP therapy in vivo and in vitro. Since oxygen-deprivation frequently lead to metabolic reprogramming, we further learned via metabolomics analysis that abnormal IGF1R pathways promoted the expression of metabolic enzymes ASS1 and PYCR1 by the transcriptional activity of c-MYC. In detail, enhanced expression of ASS1 promotes arginine metabolism for biological anabolism, whereas PYCR1 activates proline metabolism for redox balance, which maintains the proliferation ability of OSCC cells during DDP treatment under hypoxic conditions.
Conclusion
Enhanced expression of ASS1 and PYCR1 via IGF1R pathways rewired arginine and proline metabolism, promoting DDP resistance in OSCC under hypoxia. Linsitinib targeting IGF1R signaling may lead to promising combination therapy options for OSCC patients with DDP resistance.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. GBD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;68:582–97.
2. Arnold M, Ferlay J, Henegouwen MIVB, Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020;69:1564–71.
3. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.
4. Zou ZZ, Hu XY, Luo T, Ming ZN, Chen XD, Xia L, et al. Naturally-occurring spinosyn A and its derivatives function as argininosuccinate synthase activator and tumor inhibitor. Nat Commun. 2016;12:2263.
5. Mariette C, Piessen G, Triboulet JP. Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol. 2007;8:545–53.