The PRMT5-LSD1 axis confers Slug dual transcriptional activities and promotes breast cancer progression

Author:

Zhang JianchaoORCID,Fan Xiaokai,Zhou Yunfan,Chen Liang,Rao Hai

Abstract

Abstract Background Downregulation of epithelial markers and upregulation of mesenchymal markers are the characteristics of the epithelial to mesenchymal transition (EMT) program, which provides the metastatic advantage of breast cancer. However, the mechanism underlying the switch of EMT markers remains poorly understood. Methods In this study, we used the affinity purification and mass spectrometry coupled approach to identify the interactome of Slug. CoIP, GST-pulldown, ChIP, Re-ChIP, qPCR and Immunoblot were used to investigate the underlying mechanism of Slug-PRMT5-LSD1 complex. The role of PRMT5 and LSD1 in breast cancer progression was evaluated both in vivo and in vitro. Results Here we found that the transcription factor Slug associates with PRMT5 and LSD1 in a complex and facilitates the breast cancer invasion in vitro. Mechanistically, PRMT5 and LSD1 work with Slug to exert dual transcriptional activities to inhibit E-cadherin expression by PRMT5-catalyzed H4R3me2s and LSD1-mediated demethylation of H3K4me2 on the E-cadherin (CDH1) promoter, and activate vimentin (VIM) expression via PRMT5-driven H3R2me2s and LSD1-mediated removal of H3K9me2. Importantly, PRMT5 and LSD1 are coordinately expressed in breast cancer patients and pharmacologic perturbation of both PRMT5 and LSD1 shows a synergetic effect on the inhibition of breast tumor growth and metastasis in vivo. Conclusions Our study suggests that PRMT5 and LSD1 function as a dual epigenetic modifier to promote Slug induced EMT program, suggesting that the inhibition of PRMT5 and LSD1 presents a potential therapeutic strategy against cancer metastasis.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Key Research and Development Program

Shenzhen Basic Research Program

Natural Science Foundation of Guangdong Province

Joint Funds of the Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3