Abstract
Abstract
Background
Downregulation of epithelial markers and upregulation of mesenchymal markers are the characteristics of the epithelial to mesenchymal transition (EMT) program, which provides the metastatic advantage of breast cancer. However, the mechanism underlying the switch of EMT markers remains poorly understood.
Methods
In this study, we used the affinity purification and mass spectrometry coupled approach to identify the interactome of Slug. CoIP, GST-pulldown, ChIP, Re-ChIP, qPCR and Immunoblot were used to investigate the underlying mechanism of Slug-PRMT5-LSD1 complex. The role of PRMT5 and LSD1 in breast cancer progression was evaluated both in vivo and in vitro.
Results
Here we found that the transcription factor Slug associates with PRMT5 and LSD1 in a complex and facilitates the breast cancer invasion in vitro. Mechanistically, PRMT5 and LSD1 work with Slug to exert dual transcriptional activities to inhibit E-cadherin expression by PRMT5-catalyzed H4R3me2s and LSD1-mediated demethylation of H3K4me2 on the E-cadherin (CDH1) promoter, and activate vimentin (VIM) expression via PRMT5-driven H3R2me2s and LSD1-mediated removal of H3K9me2. Importantly, PRMT5 and LSD1 are coordinately expressed in breast cancer patients and pharmacologic perturbation of both PRMT5 and LSD1 shows a synergetic effect on the inhibition of breast tumor growth and metastasis in vivo.
Conclusions
Our study suggests that PRMT5 and LSD1 function as a dual epigenetic modifier to promote Slug induced EMT program, suggesting that the inhibition of PRMT5 and LSD1 presents a potential therapeutic strategy against cancer metastasis.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
National Key Research and Development Program
Shenzhen Basic Research Program
Natural Science Foundation of Guangdong Province
Joint Funds of the Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献