Author:
Park So-Yeon,Lee Choong-Jae,Choi Jang-Hyun,Kim Jee-Heun,Kim Ji-Won,Kim Ji-Young,Nam Jeong-Seok
Abstract
Abstract
Background
Radiotherapy (RT) is a highly effective multimodal nonsurgical treatment that is essential for patients with advanced colorectal cancer (CRC). Nevertheless, cell subpopulations displaying intrinsic radioresistance survive after RT. The reactivation of their proliferation and successful colonization at local or distant sites may increase the risk of poor clinical outcomes. Recently, radioresistant cancer cells surviving RT were reported to exhibit a more aggressive phenotype than parental cells, although the underlying mechanisms remain unclear.
Methods
By investigating public databases containing CRC patient data, we explored potential radioresistance-associated signaling pathways. Then, their mechanistic roles in radioresistance were investigated through multiple validation steps using patient-derived primary CRC cells, human CRC cell lines, and CRC xenografts.
Results
Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling was activated in radioresistant CRC tissues in correlation with local and distant metastases. JAK2 was preferentially overexpressed in the CRC stem cell subpopulation, which was accompanied by the phosphorylation of STAT proteins, especially STAT3. JAK2/STAT3 signaling played an essential role in promoting tumor initiation and radioresistance by limiting apoptosis and enhancing clonogenic potential. Mechanistically, the direct binding of STAT3 to the cyclin D2 (CCND2) promoter increased CCND2 transcription. CCND2 expression was required for persistent cancer stem cell (CSC) growth via the maintenance of an intact cell cycle and proliferation with low levels of DNA damage accumulation.
Conclusion
Herein, we first identified JAK2/STAT3/CCND2 signaling as a resistance mechanism for the persistent growth of CSCs after RT, suggesting potential biomarkers and regimens for improving outcomes among CRC patients.
Funder
Ministry of Science, ICT and Future Planning
Gwangju Institute of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
2. O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.
3. Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, et al. PAK1 tyrosine phosphorylation is required to induce epithelial–mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014;74:5520–31.
4. Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Haraguchi N, Inoue H, et al. Differential gene expression profiles of radioresistant pancreatic cancer cell lines established by fractionated irradiation. Int J Oncol. 2006;28:705–13.
5. Chang JT-C, Chan S-H, Lin C-Y, Lin T-Y, Wang H-M, Liao C-T, et al. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther. 2007;6:2271–9.
Cited by
200 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献