Dissecting super-enhancer driven transcriptional dependencies reveals novel therapeutic strategies and targets for group 3 subtype medulloblastoma

Author:

Li Meng,Han Yujie,Wang Chaochen,Kang Wenfeng,Jiang Wenyan,Zhang Lei,Tang YujieORCID

Abstract

Abstract Background Medulloblastoma is the most common malignant pediatric brain tumor and group 3 subtype medulloblastoma (G3-MB) exhibits the worst prognosis. Super enhancers (SEs) are large clusters of enhancers that play important roles in cancer through transcriptional control of cell identity genes, oncogenes and tumor-dependent genes. Dissecting SE-driven transcriptional dependencies of cancer leads to identification of novel oncogenic mechanisms, therapeutic strategies and targets. Methods Integrative SE analyses of primary tissues and patient-derived tumor cell lines of G3-MB were performed to extract the conserved SE-associated gene signatures and their oncogenic potentials were evaluated by gene expression, tumor-dependency and patient prognosis analyses. SE-associated subtype-specific upregulated tumor-dependent genes, which were revealed as members of SE-driven core transcriptional regulatory network of G3-MB, were then subjected to functional validation and mechanistic investigation. SE-associated therapeutic potential was further explored by genetic or pharmaceutical targeting of SE complex components or SE-associated subtype-specific upregulated tumor-dependent genes individually or in combination, and the underlying therapeutic mechanisms were also examined. Results The identified conserved SE-associated transcripts of G3-MB tissues and cell lines were enriched of subtype-specifically upregulated tumor-dependent genes and MB patients harboring enrichment of those transcripts exhibited worse prognosis. Fourteen such conserved SE-associated G3-MB-specific upregulated tumor-dependent genes were identified to be members of SE-driven core transcriptional regulatory network of G3-MB, including three well-recognized TFs (MYC, OTX2 and CRX) and eleven newly identified downstream effector genes (ARL4D, AUTS2, BMF, IGF2BP3, KIF21B, KLHL29, LRP8, MARS1, PSMB5, SDK2 and SSBP3). An OTX2-SE-ARL4D regulatory axis was further revealed to represent a subtype-specific tumor dependency and therapeutic target of G3-MB via contributing to maintaining cell cycle progression and inhibiting neural differentiation of tumor cells. Moreover, BET inhibition with CDK7 inhibition or proteasome inhibition, two combinatory strategies of targeting SE complex components (BRD4, CDK7) or SE-associated effector gene (PSMB5), were shown to exhibit synergistic therapeutic effects against G3-MB via stronger suppression of SE-associated transcription or higher induction of ER stress, respectively. Conclusions Our study verifies the oncogenic role and therapeutic potential of SE-driven transcriptional dependencies of G3-MB, resulting in better understanding of its tumor biology and identification of novel SE-associated therapeutic strategies and targets.

Funder

National Natural Science Foundation of China

Innovative Research Team of High-Level Local Universities in Shanghai

Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases

Recruitment Program of Global Experts

Innovation Program of Shanghai Municipal Education Commission

National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3