Author:
Pan Yunzhi,Liu Jing,Gao Yingyin,Guo Yuqing,Wang Changxing,Liang Zhipan,Wu Meiying,Qian Yulan,Li Yinyan,Shen Jingyi,Lu Chenchen,Ma Sai
Abstract
Abstract
Background
Increasing evidence suggests that FBXW7 has a high frequency of mutations in esophageal squamous cell carcinoma (ESCC). However, the function of FBXW7, especially the mutations, is not clear. This study was designed to investigate the functional significance of FBXW7 loss of function and underlying mechanism in ESCC.
Methods
Immunofluorescence was applied to clarify the localization and main isoform of FBXW7 in ESCC cells. Sanger sequencing were performed to explore mutations of FBXW7 in ESCC tissues. Proliferation, colony, invasion and migration assays were performed to examine the functional roles of FBXW7 in ESCC cells in vitro and in vivo. Real-time RT-PCR, immunoblotting, GST-pulldown, LC–MS/MS and co-immunoprecipitation assay were used to explore the molecular mechanism underlying the actions of FBXW7 functional inactivation in ESCC cells. Immunohistochemical staining were used to explore the expression of FBXW7 and MAP4 in ESCC tissues.
Results
The main FBXW7 isoform in ESCC cells was the β transcript in the cytoplasm. Functional inactivation of FBXW7 led to activation of the MAPK signaling pathway and upregulation of the downstream MMP3 and VEGFA, which enhanced tumor proliferation cell invasion and migration. Among the five mutation forms screened, S327X (X means truncated mutation) had an effect similar to the FBXW7 deficiency and led to the inactivation of FBXW7 in ESCC cells. Three other point mutations, S382F, D400N and R425C, attenuated but did not eliminate FBXW7 function. The other truncating mutation, S598X, which was located outside of the WD40 domain, revealed a tiny attenuation of FBXW7 in ESCC cells. Notably, MAP4 was identified as a potential target of FBXW7. The threonine T521 of MAP4, which was phosphorylated by CHEK1, played a key role in the FBXW7-related degradation system. Immunohistochemical staining indicated that FBXW7 loss of function was associated with tumor stage and shorter survival of patients with ESCC. Univariate and multivariate Cox proportional hazards regression analyses showed that high FBXW7 and low MAP4 was an independent prognostic indicator and prospective longer survival. Moreover, a combination regimen that included MK-8353 to inhibit the phosphorylation of ERK and bevacizumab to inhibit VEGFA produced potent inhibitory effects on the growth of FBXW7 inactivation xenograft tumors in vivo.
Conclusions
This study provided evidence that FBXW7 loss of function promoted ESCC via MAP4 overexpression and ERK phosphorylation, and this novel FBXW7/MAP4/ERK axis may be an efficient target for ESCC treatment.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献