Abstract
AbstractBackgroundPrevious in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis.MethodBioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence.ResultsHCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib.ConclusionWe demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients.Graphical abstract
Funder
Research Grants Council, University Grants Committee
National Natural Science Foundation of China
Shenzhen Peacock Plan
Program for Guangdong Introducing Innovative and Entrepreneurial Teams
High Level-Hospital Program, Health Commission of Guangdong Province
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn). 2018;22(3):141–50.
2. Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95(1 Suppl 1):S2-s7.
3. Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, et al. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne). 2019;10:772.
4. Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, Ludewig B, et al. Heterogeneity of Cancer Stem Cells: Rationale for Targeting the Stem Cell Niche. Biochim Biophys Acta. 2016;1866(2):276–89.
5. Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet. 2019;10:711.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献