Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma

Author:

Liu BeileiORCID,Fang Xiaona,Kwong Dora Lai-Wan,Zhang Yu,Verhoeft Krista,Gong Lanqi,Zhang Baifeng,Chen Jie,Yu Qianqian,Luo Jie,Tang Ying,Huang Tuxiong,Ling Fei,Fu Li,Yan Qian,Guan Xin-Yuan

Abstract

AbstractBackgroundPrevious in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis.MethodBioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence.ResultsHCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib.ConclusionWe demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients.Graphical abstract

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Shenzhen Peacock Plan

Program for Guangdong Introducing Innovative and Entrepreneurial Teams

High Level-Hospital Program, Health Commission of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference40 articles.

1. Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn). 2018;22(3):141–50.

2. Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95(1 Suppl 1):S2-s7.

3. Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, et al. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne). 2019;10:772.

4. Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, Ludewig B, et al. Heterogeneity of Cancer Stem Cells: Rationale for Targeting the Stem Cell Niche. Biochim Biophys Acta. 2016;1866(2):276–89.

5. Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet. 2019;10:711.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3