The A-to-I editing of KPC1 promotes intrahepatic cholangiocarcinoma by attenuating proteasomal processing of NF-κB1 p105 to p50

Author:

Gao Chengming,Zhou Guangming,Shi Jie,Shi Peipei,Jin Liang,Li Yuanfeng,Wang Xiaowen,Liao Song,Yan Han,Wu Junjie,Lu Yiming,Zhai Yun,Zhang Jinxu,Zhang Haitao,Zhang Hongxing,Yang Chenning,Cao Pengbo,Cheng Shuqun,Zhou Gangqiao

Abstract

Abstract Background Aberrant RNA editing of adenosine-to-inosine (A-to-I) has been linked to multiple human cancers, but its role in intrahepatic cholangiocarcinoma (iCCA) remains unknown. We conducted an exome-wide investigation to search for dysregulated RNA editing that drive iCCA pathogenesis. Methods An integrative whole-exome and transcriptome sequencing analysis was performed to elucidate the RNA editing landscape in iCCAs. Putative RNA editing sites were validated by Sanger sequencing. In vitro and in vivo experiments were used to assess the effects of an exemplary target gene Kip1 ubiquitination-promoting complex 1 (KPC1) and its editing on iCCA cells growth and metastasis. Crosstalk between KPC1 RNA editing and NF-κB signaling was analyzed by molecular methods. Results Through integrative omics analyses, we revealed an adenosine deaminases acting on RNA 1A (ADAR1)-mediated over-editing pattern in iCCAs. ADAR1 is frequently amplified and overexpressed in iCCAs and plays oncogenic roles. Notably, we identified a novel ADAR1-mediated A-to-I editing of KPC1 transcript, which results in substitution of methionine with valine at residue 8 (p.M8V). KPC1 p.M8V editing confers loss-of-function phenotypes through blunting the tumor-suppressive role of wild-type KPC1. Mechanistically, KPC1 p.M8V weakens the affinity of KPC1 to its substrate NF-κB1 p105, thereby reducing the ubiquitinating and proteasomal processing of p105 to p50, which in turn enhances the activity of oncogenic NF-κB signaling. Conclusions Our findings established that amplification-driven ADAR1 overexpression results in overediting of KPC1 p.M8V in iCCAs, leading to progression via activation of the NF-κB signaling pathway, and suggested ADAR1-KPC1-NF-κB axis as a potential therapeutic target for iCCA.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Major Project of Chinese National Programs for Fundamental Research and Development

State Key Infection Disease Project of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3